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The objective of the work reported herein was to use a systems engineering approach to guide development of integrated
instrumentation/sensor systems (IISS) incorporating communications, interconnections, and signal acquisition. These require
enhanced suitability and effectiveness for diagnostics and health management of aerospace equipment governed by the principles
of Condition-based maintenance (CBM). It is concluded that the systems engineering approach to IISS definition provided clear
benefits in identifying overall system requirements and an architectural framework for categorizing and evaluating alternative
architectures, relative to a bottom up focus on sensor technology blind to system level user needs. CBM IISS imperatives
identified include factors such as tolerance of the bulk of aerospace equipment operational environments, low intrusiveness, rapid
reconfiguration, and affordable life cycle costs. The functional features identified include interrogation of the variety of sensor types
and interfaces common in aerospace equipment applications over multiplexed communication media with flexibility to allow rapid
system reconfiguration to adapt to evolving sensor needs. This implies standardized interfaces at the sensor location (preferably to
open standards), reduced wire/connector pin count in harnesses (or their elimination through use of wireless communications).

1. Scope, Objectives, and Methods

This article paper the instrumentation and sensors employed
to support condition-based maintenance (CBM) of
aerospace equipment, sensing the condition of equipment
and components (state and operation) needed to enable
diagnostics triggering necessary maintenance actions. It
encompasses such instrumentation and sensors, plus the sig-
nal acquisition function and the intervening communication
media, thus “integrated instrumentation/sensor systems”
[IISS]. The focus is on IISS application to diagnostics and
health management (DHM) enabling more cost effective
CBM for the complex mechanical systems required for
propulsion & power, environmental control, flight control,
and other essential functions that are weight and volume
constrained, tightly integrated with other systems and
vehicle structure, and exposed to the full rigors of the flight
envelope and environment.

Modern aerospace equipment control systems include
many control sensors that may also serve CBM functions.
However, IISS are being proposed and deployed for aerospace
equipment diagnostics and health management (DHM) (as
described by Urban [1], Litt et al. [2], and Paris et al. [3])
to enable more effective CBM. The growing complexity of
such IISS is leading to consideration of distributed DHM
architectures to overcome the cost, weight, and dependability
challenges of centralized system architectures.

A distinction between sensor systems, or elements of
sensor systems, relates to the signal acquisition bandwidth
and inherent data processing requirements. The majority of
the physical parameters sensed for DHM require discrete
samples at relatively low rates, on the order of 100 to 1
per second. Periodic quasistatic samples of parameters such
as pressure, temperature, rotational speed, strain, position,
and flow are adequate for most physical system state assess-
ments. On the other hand, dynamic sensor measurements
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(acoustic, pressure fluctuations, vibratory motion, and
strain. . .) require high bandwidth, high frequency records.
This study addresses sensor system applications interrogating
a multiplicity of diverse sensed parameters at relatively low
bandwidth, but the conclusions may also apply to high
bandwidth signal acquisition given appropriate multiplexing
technologies.

It is hypothesized that, within the above bounds, a top
down systems engineering approach will be more fruitful
than a bottom up pursuit of advanced sensor technol-
ogy in meeting user needs for more suitable and eco-
nomic instrumentation and sensor solutions. This approach
involves defining DHM IISS requirements and objectives,
assessing user preferences, defining a functional architectural
framework capturing the full range of alternative functional
architectures, and identifying functional features and archi-
tectures that transform the performance, suitability and
cost/benefit trades limiting the exploitation of advanced
sensor capabilities in CBM. Relevant state of the art examples
of these are briefly described.

2. Basic Sensor System Requirements

This section addresses the instrumentation/sensor require-
ments inherent to DHM IISS functionality, that is, acquisi-
tion of sensor signals indicative of equipment condition.

2.1. Accuracy, Precision, and Range. DHM may often require
accurate measurements covering the full range of condi-
tions experienced by the system in normal and abnormal
operation, although in many cases thresholds identifying
abnormal conditions or modes of operation may be all
that is necessary. However, such thresholds may need to be
field adjustable over a significant range based on service
experience and high precision is required for critical mea-
surements.

2.2. Repeatability and Stability. The operational implications
of diagnostic sensor servicing or recalibration on intervals
less than months and even years of service are usually
unacceptable. Access to degraded sensors usually requires
removal of the equipment in which it embedded. Servicing
signal acquisition subsystems may not be as onerous, but
it is still an undesirable cost and unavailability driver.
Intermittent wire harnesses and connector faults are often
the major contributor to poor repeatability of DHM sensor
data. Corrupt DHM data records are common impediments
to troubleshooting, prolonging, and undermining effective
CBM responses.

2.3. Endurance and Reliability. Similarly, sensor and IISS
dependability is crucial for diagnostic applications. Dispatch
with DHM failures may be restricted, and sensors and
harnesses are often inaccessible. Interconnecting harnesses
are an important source of failures and false alarms that
reduce mission capability and availability, and contribute to
the high maintenance cost of aerospace systems.

For some specific sensor requirements in the domains
considered here, for example, assessing system behavior
and component state in gas turbine hot sections, sensor
durability may limit the possibilities but research and devel-
opment continues to expand the environmental capabilities
of available sensors.

The above metrics are central to sensor selection and
IISS serviceability and the overall sensor system architecture
and functionality must accommodate these requirements.
However, one must also consider DHM IISS requirements
driven more by suitability and life cycle cost (LCC) consid-
erations derived from the operational challenges of CBM,
requirements related to the process more than the product.
The sensor system must be both suitable and affordable
for CBM usage. In the US Navy, CBM is expected to be
implemented in accordance with the principles of reliability
centered maintenance (RCM), identified as CBM+. The most
cost effective solution for individual failure modes is adopted
and the cost of IISS enabled CBM must be competitive with
traditional approaches.

3. Suitability and Life Cycle Cost Objectives

DHM IISS design considerations and requirements must
consider the application and usage of the system in serving
the needs of CBM.

3.1. Serviceability and Affordability. Justifying total DHM
IISS life cycle cost, including maintenance, technical support
and data analysis, versus the known and accepted burden
of direct periodic inspection, or removal and test, of
aerospace system components is a significant barrier for
DHM IISS application, even when users appreciate the value
of CBM. Development and deployment of DHM IISS that are
serviceable and affordable in aerospace applications limits
the application of CBM.

A critical factor driving cost in instrumentation and sen-
sor systems in aerospace applications is the usual architecture
of a single sensor energized by, and communicating with,
unique signal acquisition circuitry over a dedicated com-
munication channel (usually more than a few conductors
per sensor). This is less common in industrial applications,
where networked “smart” sensors (e.g., Madni [4]) that
locally process sensor readings and communicate the results
in a standard format over a digital data bus to a central data
recorder are common.

The possibility of distributed sensor & signal acquisition
architectures in aerospace control system applications has
been the subject of much analysis and research (e.g., see
Behbahani et al. [5], Litt et al. [2], Culley and Behbahani [6],
and Tulpule et al. [7]) but has been limited in application to
date as the demanding aerospace operating environment and
the limited thermal and vibration capabilities of available
analog and digital circuit components preclude the use of
such “smart” sensors.

A related issue is quality assurance for DHM IISS. Once
all sensors have been installed and hooked up, verifying
that the sensors are correctly hooked up and functional,



International Journal of Aerospace Engineering 3

and correcting any faults, is critical. Furthermore, DHM
sensors are usually expected to be field replaceable with no
change in signal acquisition calibration or compensation.
Both factors drive IISS cost versus capability trades, and
should be considered in selecting IISS architectures that
enable embedded sensor identification and functionality
checks.

3.2. Compatibility versus Intrusiveness. Sensor size, the need
for access and interconnections, and signal acquisition
equipment weight and volume constrain the application and
utility of DHM sensor systems. Provisions for accessibility
of sensors and interconnects have significant impact on
equipment cost, while the need to measure more param-
eters, more reliably, increases DHM IISS complexity and
cost. As aerospace programs proceed through design and
development, with tightening cost and weight margins, the
weight and cost of DHM IISS combine to drive reduction or
(indefinite) deferral of CBM essential capability.

3.3. Adaptability and Flexibility. A central issue in all instru-
mentation/sensor systems is uncertainty, the risk that what
needs to be measured to meet the system performance and
reliability/availability objectives has not been anticipated or
considered. Aerospace equipment is designed and developed
to be robust and reliable with limited reliance on preventive
and corrective maintenance. Much of the need for scheduled
maintenance is in response to unanticipated equipment
failure modes becoming apparent late in development and
in service. Thus, the ability to reconfigure DHM IISS to
acquire data not foreseen when the equipment was specified
and acquired is essential for effective CBM. (Xu et al.
[8] emphasize these imperatives). DHM systems should be
reconfigurable in days or weeks to enable data collection for
informed root cause determination and to preempt signif-
icant degradation of operability and mission availability by
rapid fielding of DHM system upgrades.

3.4. User Preferences. To validate the above, a survey was
sent to known DHM subject matter experts [SME], asking
them to rank the above factors as contributors to DHM
IISS suitability. The results of the seven responses received
are displayed in Figure 1, with highest priority given to ser-
viceability in the aerospace environment but with significant
concern with user needs for easy of IISS integration with
the equipment serviced and adaptability to emerging CBM
requirements.

When asked to weight these system level factors, the
median SME responses results were intuitively satisfactory:
1, 2/3, and 1/3 for serviceability, unobtrusiveness, and
flexibility, respectively.

4. Functional Architecture and Implications

4.1. DHM IISS Schematic Functional Architecture Framework.
Figure 2 represents a schematic framework for DHM IISS
functional architectures. It depicts a number of diverse
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Figure 1: Subject matter expert ranking.

sensors monitoring a piece of aerospace equipment. This
illustration neglects auxiliary elements, such as power supply
and sensor excitation, to highlight the core functions for
the purpose of identifying primary functional architectural
options.

In this illustration, the state of a piece of equipment is
measured by a number (n) of sensors, each of which first
converts a physical input into an analog input intrinsic to the
physical sensor mode/design (PIN-AIn). For example, sensed
pressure deflects a diaphragm to strain a strain gauge, or an
optical fiber Bragg grating.

A schematic illustrating the common functions of sys-
tems for data acquisition from multiple, diverse sensors,
including alternatives for multiplexed sensor data commu-
nication.

The second class of functions converts the fundamental
analog input to an analog output (AIn-AOn) appropriate for
signal transmission and acquisition, for example, a voltage
or specific frequency of light. The third class of functions
converts this analog output to a digital output (Aon-DOn),
a basic function of modern a signal acquisition systems
enabling further automated processing of the IISS output
data (DOn) by the DHM system. These are proposed as the
fundamental functional building blocks of any DHM IISS.

Furthermore, if the selection and implementation of
the IISS functions are appropriate, the “digital output”
originating from multiple sensors can be transmitted using
a common, standardized protocol to the DHM signal acqui-
sition and processing functions over a single multiplexed
digital data bus.

If the selection and implementation of the first two
functions are compatible, “analog output” originating from
multiple sensors can be transmitted in a standardized format
via a frequency and/or time division multiplexed channel
(e.g., optical fiber or wireless analog signals sharing a
common transmission medium).
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Figure 2: Generic functional architecture for DHM IISS.

4.2. Architectural Alternatives. The more common alterna-
tive is the standardization and multiplexed transmission of
the digital outputs. This functional architecture is almost
essential for state of the art DHM, where data bus based
architectures for digital data transmission are the norm.
However, for many aerospace applications the sensor envi-
ronment and space constraints require placing the analog
output signal acquisition, digital conversion, and further
processing in an avionics bay or other protected environment
removed from the equipment being monitored and the
embedded sensors. This typically requires communication
of analog sensor output over a multiplicity of dedicated
channels feeding dedicated signal acquisition subsystems,
curtailing the desired benefits of digital signal multiplexing:
reliable, lighter, unobtrusive, and economical interconnec-
tions.

A distributed physical architecture, where the analog
to digital conversion and signal multiplexing function is
allocated to embedded “smart sensors,” appears highly
desirable. However this alternative is constrained by the
environmental limitations of conventional silicon based
digital electronics. Work is in progress to demonstrate a cost
effective and suitable capability exploiting high temperature
qualified electronic components, (see Millar and Tulpule [9]
for one example).

A second architectural alternative exploits standardized
analog output signals to attain the benefits of multiplexed
signal transmission at this interface, as exemplified by
applications of optical fiber Bragg gratings where multiple
fiber optic sensors are interrogated by over a single optical
fiber. (See Abad [10]). This alternative architecture requires
sensors (preferable unpowered transducers) designed to
conform to standardized analog outputs (electrical, opti-
cal, or radio frequency) communicated over a common
transmission medium using time or wavelength division
multiplexing for acquisition by a common signal acquisition
channel. This is attractive in both reducing the size and
complexity of harnesses and limiting the number and variety
of signal acquisition interfaces and devices.

The second architecture puts severe constraints on the
analog output, and demands innovation in sensor design
to suit a common interface. The design disclosed in Millar
[11], for example, requires that all sensors are designed such
that diverse sensed physical parameters strain an optical fiber
Bragg grating or otherwise modify its optical characteristics
in compliance with a defined common standard, so all results
can be read out with a single optoelectronic signal acquisition
subsystem.

However, the latter approach is an attractive option for
aerospace environments and applications where the cost,
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volume, complexity, and immaturity of robust smart sensors
would otherwise put the desired benefits out of reach.
(Designing sensor suites to standard analog outputs alone
would enable some of the features proposed below, but the
ability to multiplex the sensor analog output is necessary to
radically address suitability and life cycle cost objectives).

4.3. Features Addressing Suitability and Life Cycle Cost
Objectives. In general, the implication of the suitability
and life cycle cost [LCC] driven objectives for integrated
instrumentation/sensor system design is to make the sensors
“smart” by moving the sensor specific (AOn) interface as
close as possible to the sensed parameter, without com-
promising the sensor performance objectives. Distributed
systems with standardized multiplexed interfaces at the
sensor location should reduce the weight, complexity, and
cost of interconnections and facilitate IISS modification
in response to sensor requirements changes or capability
improvements.

If the standard interface is “open,” to a public specifica-
tion, system capability will increase and LCC will reduce as
suppliers compete to provide improved sensors meeting the
standard interface, for both existing measurements and novel
sensor requirements.

A capacity to support multiplexed communication will
yield gains in cost and compatibility, particularly if it
allows a single (smaller and less complex and costly) signal
acquisition unit to interrogate multiple sensors. A variety
of communication network architectures become viable,
allowing optimization for enhanced system reliability and
reconfiguration on the fly. As noted above, multiplexing
the “analog outputs” of the sensors is the more attractive
option as it may eliminate a multiplicity of differentiated
signal acquisition channels. Appropriate standardization of
the analog output communication protocol would enable
“plug and play” sensor interchangeability, enhancing IISS
adaptability to emerging DHM requirements.

Another desirable feature would be functionality for
automated sensor identification (type and item) and char-
acterization, avoiding the onerous signal tracing of con-
ventional instrumentation, and alleviating the high costs of
manufacturing sensors with effectively identical calibrations.
Embedded identification and calibration (or classification)
data interrogated over the signal acquisition network would
be ideal, allowing plug and play sensor addition, configura-
tion management, and interchange on the network. The non-
volatile memory function implied by this requirement might
also be used to store usage, fault and system configuration
data to guide maintenance.

A further desirable characteristic is a technology base
shared by current and future applications in other fields,
preferably ones with commercial markets that can contribute
to financing technological maturation and add production
volume for common components. These alternative markets
would then share in recovering the sensor system invest-
ments. For example, wireless and optical fiber technology
spun off from communications industry applications is a
resource for development of analog multiplexed IISS.

5. Conclusions and Recommendations

The schematic DHM IISS functional framework presented is
a useful tool to categorize alternative DHM IISS approaches.
Within this framework, it will be fruitful to identify a
variety of compatible implementations for each function,
for example, generation of suitable pairings of analog inputs
and common analog multiplex output protocols from optical
fiber sensors measuring diverse physical inputs. Morpholog-
ical variations on these options could be used to identify
promising design alternatives for DHM IISS.

A variety of design approaches implementing the sec-
ond alternative functional architecture—standardized mul-
tiplexed analog sensor outputs—have been defined and
are in the early stages of feasibility demonstration and
development. Six years ago, Mrad and Xiao [12] pointed
out a key technology hurdle for aerospace optical fiber
sensor systems: the need for robust optoelectronic signal
acquisition. Luna Innovations Inc. [13] recently completed
a US Navy Ph. II SBIR contract addressing this requirement.

Fonseca et al. [14] early demonstrated multiple pressure
transducers responding to microwave interrogation, and
Environetix [15] offered temperature sensors using a similar
principle. Recent Navy SBIR topics exploring the potential
of multiplexed analog signals are also bearing fruit. Gregory
et al. [16] describe a SBIR project exploiting a wireless
transducer concept applicable to a variety of sensor types
which will allow numerous sensors in a gas turbine hot
section to be wirelessly interrogated by a single signal
acquisition unit. Syntonics LLC [17, 18] is developing a
novel surface acoustic wave (SAW) wireless transducer with
multiple sensor capabilities for use up to 750 deg. C.

Further effort to investigate the feasibility of, and
develop, such innovative technological approaches is a
promising route to more suitable and cost effective DHM
IISS. In defining and evaluating such approaches, the
desirable features described in the previous section should
be considered. In general, the systems engineering approach
provided clear benefits in defining user significant IISS
system requirements and an architectural framework for
categorizing, identifying, and evaluating alternative architec-
tures, relative to a bottom up focus on sensor technology not
addressing system level user needs.

Nomenclature

CBM: Condition Based maintenance
DHM: Diagnostics and health management
IISS: Integrated instrumentation/sensor systems
LCC: Life cycle cost
RCM: Reliability centered maintenance
SBIR: Small business innovation research.
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